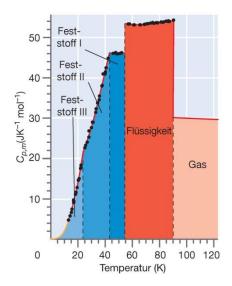
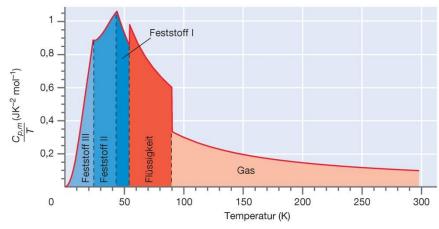


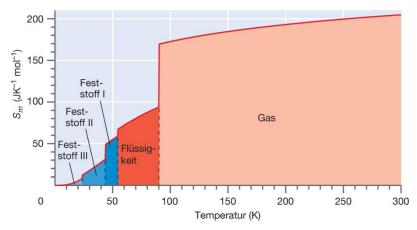
Entropie
$$S = \frac{Q}{T}$$
 $dS = \frac{dQ}{T}$



Berechnung der Entropie nach dem 3. Hauptsatz


Temperaturabhängigkeit der Entropie

 aus Daten für die Wärmekapazität und der Phasenübergangsenthalpien

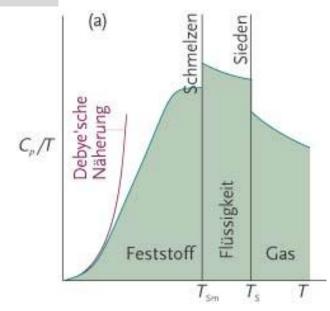

Beispiel: Standardentropie von O₂

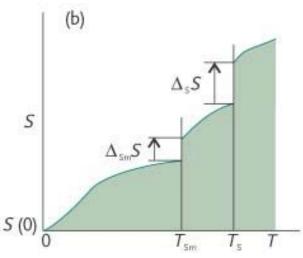
1) Experimentell bestimmte Wärmekapazität

2) C_p/T als Funktion der Temperatur

3) Molare Entropie als Funktion der Temperatur

Berechnung der Entropie nach dem 3. Hauptsatz


Temperaturabhängigkeit der Entropie


- aus Daten für die Wärmekapazität
- die Gesamtentropie entspricht der Summe aus der Fläche unter der Kurve von a) und den Entropien aller durchlaufenen Phasenumwandlungen (Kurve b))
- \rightarrow Berechnung von S_{ges} bei beliebiger T möglich

Beispiel: Standardentropie von N ₂ bei 20°C:	$S_{\mathbf{m}}^{\ominus}$ / (J K $^{-1}$ mol $^{-1}$)
--	---

and district opin for the transfer and the	$\omega_{\rm m}$ / (3.12	mor	/
Debye'sches T ³ -Gesetz (0 bis 10 K)	1.92		
Integration (10 K bis 35.61 K)	25.25		
Phasenübergang (35.61 K)	6.43		
Integration (35.61 K bis 63.14 K)	23.38		
Phasenübergang (Schmelzen, 63.14 K)	11.42		
Integration (63.14 K bis 77.32 K)	11.41		
Phasenübergang (Verdampfung, 77.32 K)	72.13		
Integration (77.32 K bis 298.15 K)	39.20		
Korrektur für reales Verhalten des Gases	0.92		
Summe:	192.06		

$$S_{m}^{\ominus}(298.15~\text{K}) = S_{m}~(0) + 192.1~\text{J K}^{-1}~\text{mol}^{-1}~.$$

